

Substation Protection and Automation Solution Brochure

BEIJING SIFANG AUTOMATION CO., LTD.

BEIJING SIFANG ENGINEERING CO., LTD.

COPYRIGHT OWNER: BEIJING SIFANG AUTOMATION CO., LTD.

Note: the company keeps the right to perfect the instruction. If equipment does not agree with the instruction at anywhere, please contact our company in time. We will provide you with corresponding service.

SIFANG

[®] is registered trademark of BEIJING SIFANG AUTOMATION CO., LTD.

We reserve all rights to this document, even in the event that a patent is issued and a different commercial proprietary right is registered. Improper use, in particular reproduction and dissemination to third parties, is not permitted.

This document has been carefully checked. If the user nevertheless detects any errors, he is asked to notify us as soon as possible.

The data contained in this manual is intended solely for the IED description and is not to be deemed to be a statement of guaranteed properties. In the interests of our customers, we constantly seek to ensure that our products are developed to the latest technological standards as a result; it is possible that there may be some differences between the hardware/software product and this information product.

CONTENTS

P02 P03 P04 P05 P06

Overview Features Architecture Key Projects Products

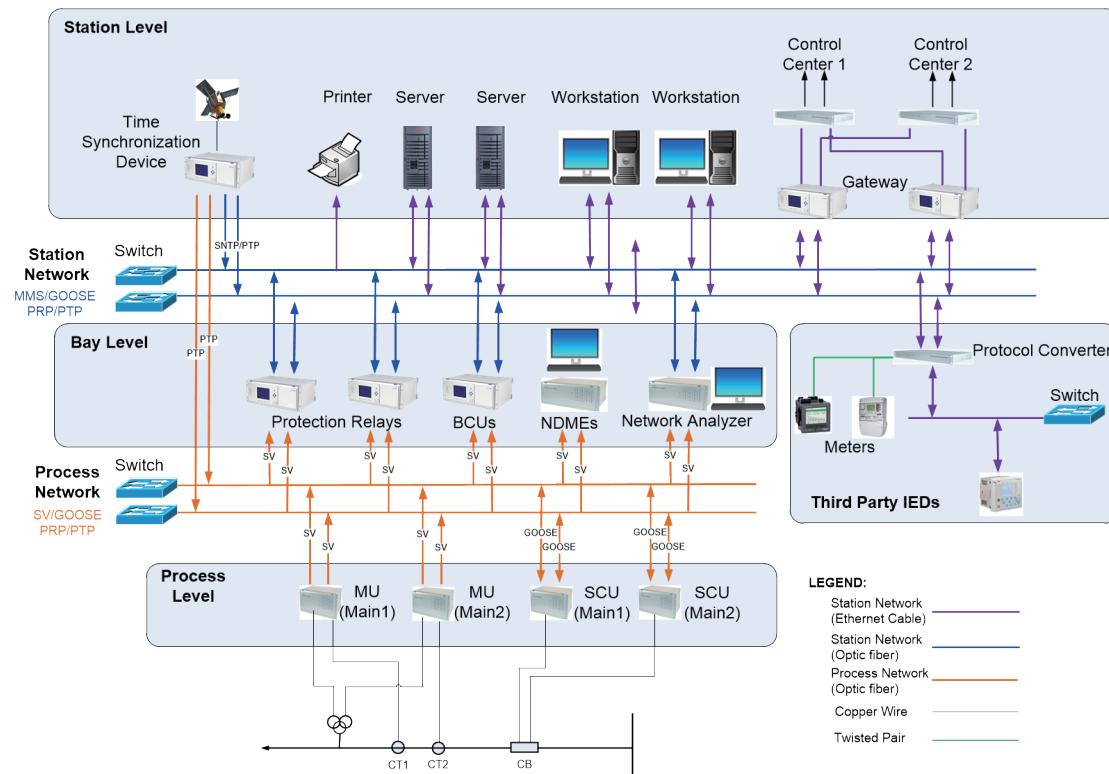
P07 P15 P17 P20 P22

Protection SCU/MU SCADA Gateway Bay Control Unit
CSC Series CSD-603AWE CSC-2000(V2) CSD-1321 CSI-200E

P25 P29 P31 P34 P36 P38

RTU CSI-200E- Time Ethernet Fault Locator NDME Network
ER Synchronization Switch CSD- CSGC-SMDS-DG Analyzer
Device CSC-196 187-GE 193A CSRA-2000

OVERVIEW


SIFANG Substation Protection and Automation Solution is an integrated system that combines protection, control, monitoring, communication, and management intelligent electronic devices (IEDs) to ensure the safe, reliable, and efficient operation of power substations.

The solution is designed to detect electrical faults rapidly and isolate affected equipment, minimizing damage and service interruptions. At the same time, it enables automatic and remote control of substation devices, reducing manual intervention and improving operational efficiency.

Based on IEDs and standardized communication protocols such as IEC 61850, the system provides real-time data acquisition, event and disturbance recording, and seamless information exchange between process level, bay level, station level, and control centers.

Substation protection and automation solutions support a wide range of applications, including transmission and distribution substations, renewable energy plants, industrial power systems, and digital or smart substations, covering voltage levels from medium voltage to extra-high voltage.

Overall, SIFANG substation protection and automation solution enables enhanced grid safety, higher reliability, optimized operation, and intelligent asset management, forming a critical foundation for modern and future power systems.

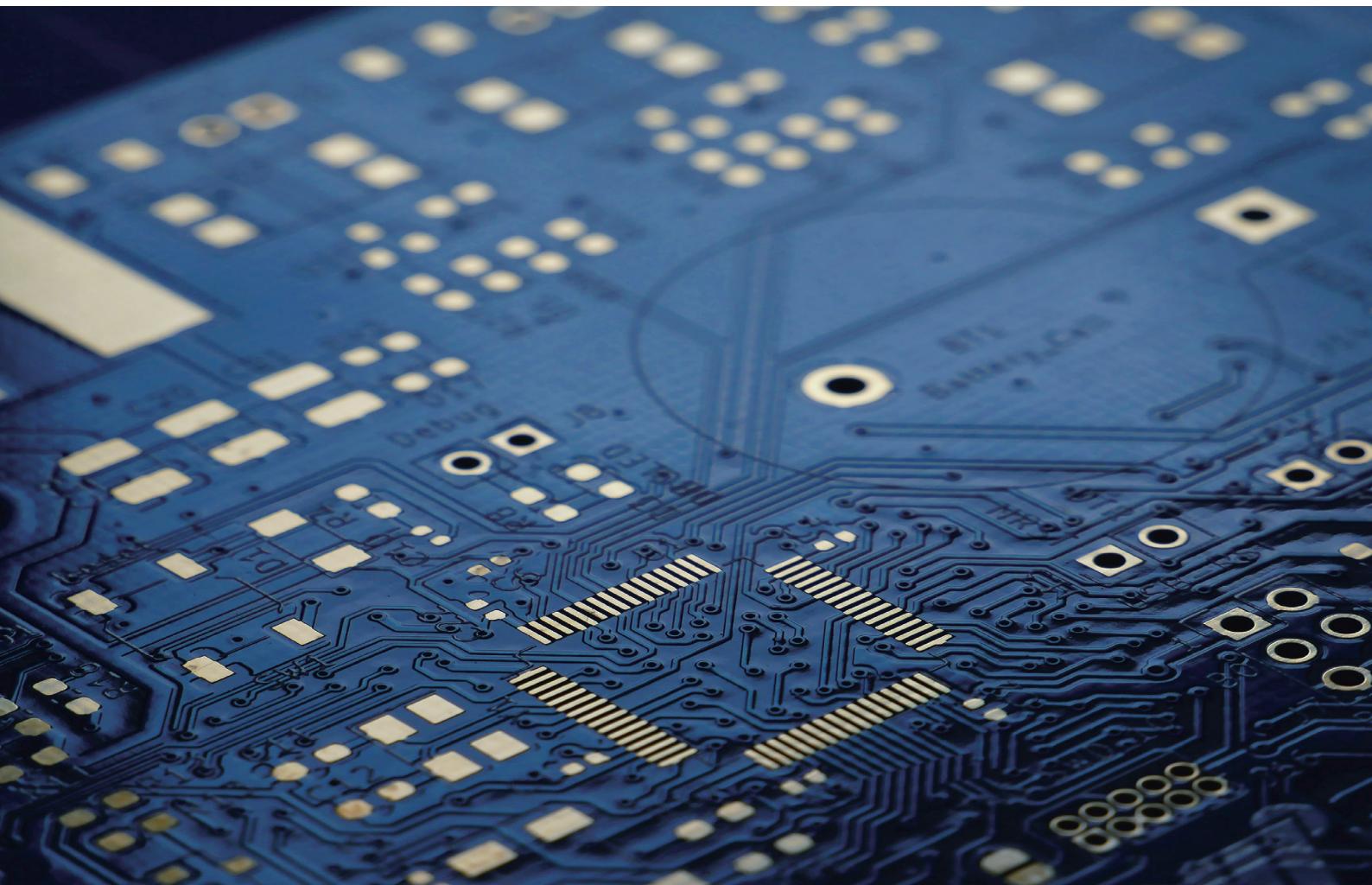
SIFANG Digital Substation Solution Typical Architecture

FEATURES

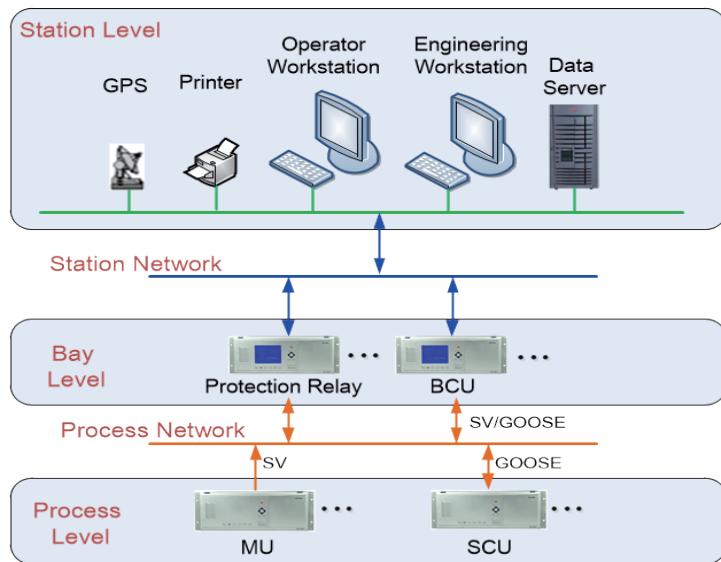
Comprehensive Application Coverage

Self-developed protection and automation products comprehensively cover substation applications across all voltage levels, ranging from 6kV to 1000kV.

Efficient Delivery and Localized Services


Swift product delivery and cost-effective on-site services are ensured through close collaboration between international and local teams.

Powerful R&D and Customization Capability


Strong research and development capabilities enable customized solutions tailored to specific customer requirements and project needs.

Internationally Recognized Certifications

Products are certified with KEMA Gold Type Test Certification and IEC 61850 Conformance Certification, ensuring high reliability and global compliance.

ARCHITECTURE

The typical architecture of a SIFANG digital substation is the Three-Levels-Two-Networks configuration.

It comprises three levels: station level, bay level, and process level. Additionally, it incorporates two networks: the station network and the process network.

Station Level

The station level equipment consists of servers, operator workstations, engineer workstations, gateway, and printers, etc.

Bay Level

The bay level is composed of protection relay, BCU, and NDME, etc. The network failure at the station network will not affect the function of the bay level equipment.

Process Level(For Digital Substation)

The Process Level contains the Smart Control Unit (SCU) and Merging Unit (MU). Typically, Merging Units (MU) are used to convert analog signals from the secondary of CTs and VTs to a digital interface. The interface to breakers and disconnect switches is digitized by Switchgear Control Units (SCU). SCUs have a hardwired interface to the breaker trip/close coil to operate the breaker by receiving GOOSE messages from the protection and control IEDs.

KEY PROJECTS

ACWA POWER SAMARKAND-1 & SAMARKAND-2

- Large-scale renewable energy is evacuated through the highest-voltage-level substations in Uzbekistan, including the 500 kV Nurabad Grid Substation and the 220 kV Kushkuduk Substation.
- Sifang supplies the substation secondary systems, including protection relays, BCUs, SCADA, fault recorders, fault locators, as well as secondary cabling design.

THAILAND PEA DIGITAL SUBSTATION PROJECT

- Provincial Electricity Authority (PEA)'s First Digital Substation
- Seven 115kV digital substations.
- Use fully network mode in process level.
- PRP, 1588 time synchronization for station level.
- PRP, Optical IRIG-B time synchronization for process level.

NGCP 138KV ISABEL DIGITAL SUBSTATION PROJECT

- National Grid Corporation of the Philippines (NGCP)'s First Digital Substation
- Digital renovation of one 138kv substations.
- Half digital mode with conventional sampling and GOOSE tripping.
- Use SNTP for station level, and IEEE1588 (through process network) for bay level and process level.
- The redundant protection relay and SCU are respectively connected to the process network A and network B.

PRODUCTS

Product Series

Products	Type
Protection Relays *	CSC Series
MU/SCU *	CSD-603
SCADA	CSC-2000(V2)
Gateway	CSD-1321
BCU/RTU *	CSI-200
Time Synchronization Device	CSC-196
Switch	CSD-187
Travelling Wave Fault Locator	CSD-193
Fault Recorder *	CSGC-SMDS-DG
Network Analyzer *	CSRA-2000

* Smart Device

PROTECTION CSC SERIES

SIFANG Protection IEDs cover the entire power system, from 1000kV transmission to 6kV distribution. They serve power generation, transmission, distribution, storage and diverse industrial sectors—including petrochemical, iron & steel, metallurgy, rail transportation.

Types

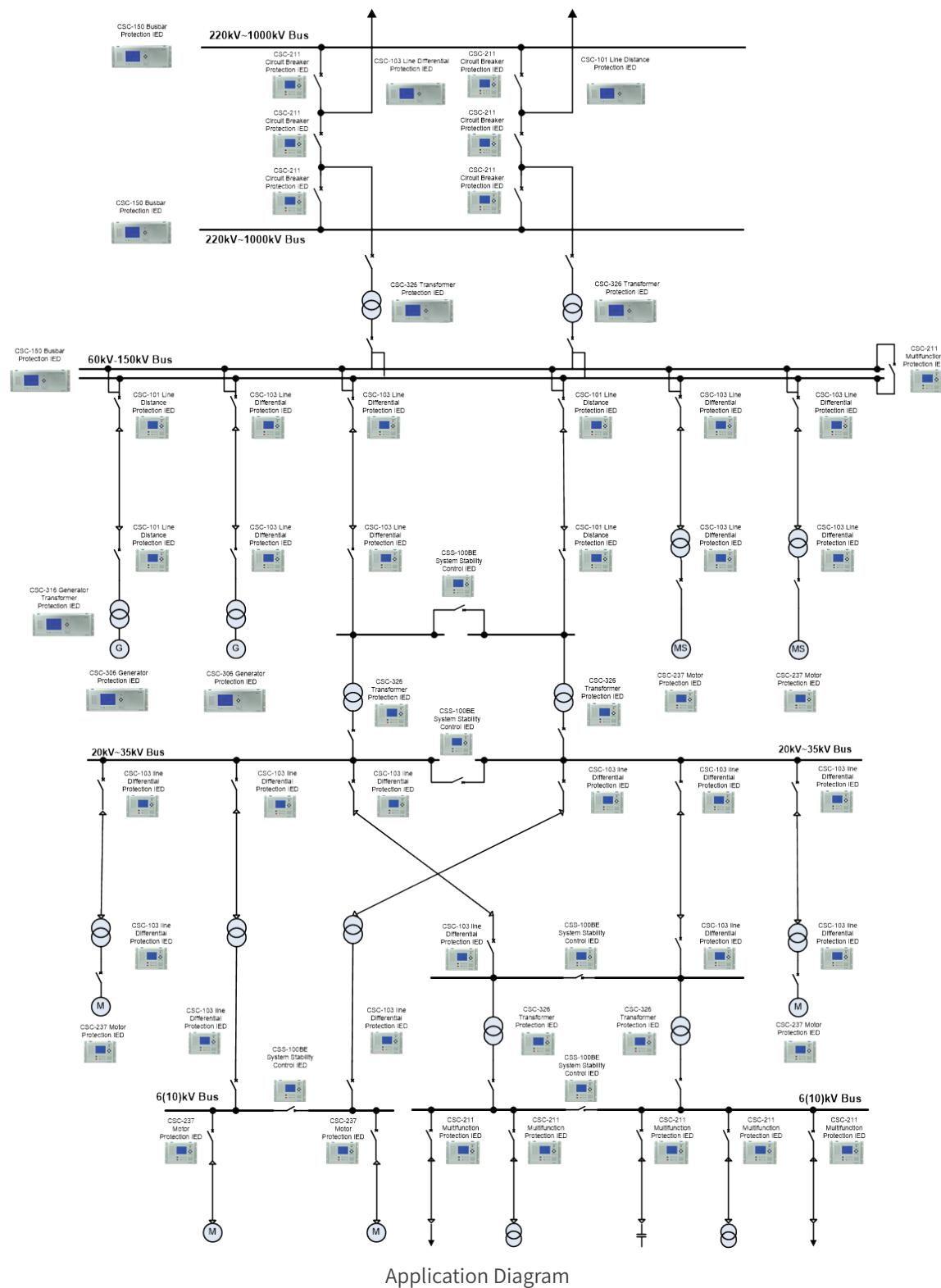
CSC-103 Line Differential Protection IED
 CSC-101 Line Distance Protection IED
 CSC-326 Transformer Protection IED
 CSC-150 Busbar Protection IED
 CSC-306 Generator Protection IED

CSC-316 Generator Transformer Protection IED
 CSC-211 Multifunction Protection IED
 CSC-237 Motor Protection IED
 CSC-280 Series Multifunction Protection IED
 CSS-100BE System Stability Control IED

Features

High-performance hardware platform

- Robust hardware with excellent EMC performance and IP54 protection under -40°C to +70°C operating temperature.
- Powerful scalable hardware capability, for present and future application.
- Mixable CT&VT inputs / SV (Sampling Value) input /output.
- Mixable Binary inputs & output relays / GOOSE inputs / outputs.
- Dual (single) CPU, dual A/D acquisition and mutual blocking, avoid mal-operation due to internal failure or inference.


- The flexible, scalable and compatible hardware architecture is able to satisfy user 's tailor-made hardware scheme.
- Large capacity of recording and log, up to 800 second oscillation record storage.
- Multiple communication ports satisfied all kind of communication demand.

High reliability hardware and software design concept

- Fully proven and complete protection functions library can be customized into user own function scheme.
- Unique principle of startup element guarantee the correct operation in fault and disturbance
- Power supply module works correctly even in unstable and intermittent auxiliary power supply system
- Multiple protection principle to one protected primary equipment offer complete and sensitive protection
- Complete hardware self-supervision

Powerful and friendly software tool

- Visual user configuring and logic programming windows make the job convenient and efficient
- Capability to precise processing node tracing and fault analysis help engineer catch the fault cause easily and quickly

Functionality	ANIS Code	101-EB	103-EB	103-EB-D	150-EA	150-EB	306-EA	306-EB	316-EA	316-EB	326-EB	326-EB-D	211-EB	237-EB	246-EB	281-EC	282-EC	283-EC	284-EC	285-EC	CSS-100BE-EB	CSI-200E-EB
Differential protection																						
Line differential protection	87L			■	■															■		
Transformer differential protection	87T									■	■	■	■							■		
Transformer side differential protection	87TW											■										
Generator and transformer differential protection	87GT										■											
Restricted earth fault protection-Low Impedance	87NL									■	■	■										
Restricted earth fault protection-High Impedance	87NH					□							□	□								
Reactor differential protection	87R									□		□										
Busbar differential protection	87B				■	■																
Generator differential protection	87G						■	■														
Transverse differential protection of single element	87GT						■	■														
Exciter differential protection	87E								□													
Excitation transformer differential protection	87TE								□													
STUB differential protection	87STB																					
Motor differential protection	87M														■							
Distance protection function																						
Distance protection with quadrilateral characteristic	21&21N	■	■	■																		
Distance protection with MHO characteristic	21&21N	■	■						■	■	■	■	■	■	■							
Power swing blocking logic	68	■	■	■																		
Teleprotection by distance protection	85-21	■	■																			
Teleprotection by directional earth fault protection	85-67N	■	■																			
Current protection																						
Non-directional overcurrent protection	50&51						■	■	■	■	■	■	□		■	■	■	■	■			
Non-directional emergency overcurrent protection	50&51	■	■								■											
Directional overcurrent protection	67	■	■	■					■	■	■	■	■	■	■	■				■		

Functionality	ANIS Code	101-EB	103-EB	103-EB-D	150-EA	150-EB	306-EA	306-EB	316-EA	316-EB	326-EB	326-EB-D	211-EB	237-EB	246-EB	281-EC	282-EC	283-EC	284-EC	285-EC	CSS-100BE-EB	CSI-200E-EB
Active power/Reactive power		■	■	■			■	■	■	■	■	■	■	■		□		□	□			■
Wh/Varh		□	□	□									□	□								■
Temperature (internal)		■	■	■	■	■	■	■	■	■	■	■	■	■	■						■	■
Temperature (Other Device)			□				□	□	□	□	□	□	□	□	□		□	□	□	□		■
Control function																						
CB control		□	□	□	□	□	□	□	□	□	□	□	■	■	■	■	■	■	■	■		■
Isolator control		□	□	□	□	□	□	□	□	□	□	□	■	■	■	■	■	■	■	■	■	■
Transformer tap regulation									□	□	□											■
Programmable interlock logic		■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■
Remote/Local control switch		■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■	■
Primary Equipment Management function																						
Tripping counter		□	□	□			□	□	□	□	□	□	□	□	□							□
Operation counter		□	□	□			□	□	□	□	□	□	□	□	□							□
CB wear monitoring		□	□	□			□	□	□	□	□	□	□	□	□							□

SCU/MU CSD-603AWE

CSD-603AWE serves as both a Smart Control Unit (SCU) and a Merging Unit (MU), providing a physical interface between primary and secondary equipment. It measures currents and voltages from instrument transformers while also exchanging status signals and control commands with primary equipment. All data transmission is performed in a standardized digital format via optical fiber.

Features

➤ Modular Design

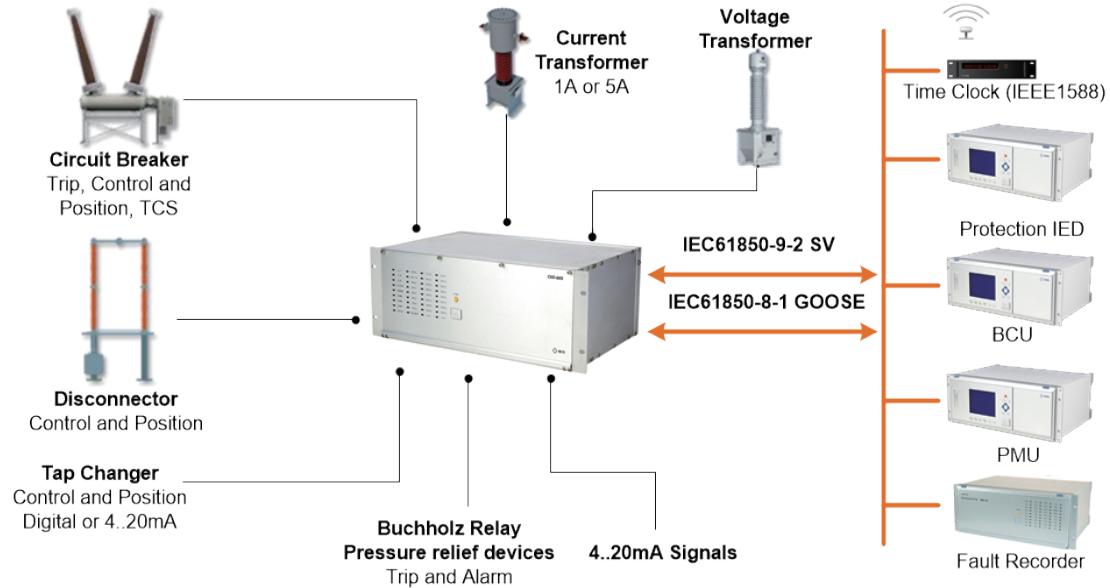
CSD-603AWE features a modular design, comprising multiple flexible and configurable modules. Key functions—such as analog input, IEC61850-9-2 output, voltage switching and coordination, and digital I/O—can be easily reconfigured through configuration files. This approach enhances both software flexibility and reliability.

➤ Time Synchronization with High Precision

CSD-603AWE supports both IRIG-B and IEEE1588 time synchronization. The advanced dedicated time synchronization chip can provide the adjustable time frequency with the time synchronization accuracy excellent than 1us and the time accuracy excellent 24us/1hr.

➤ Hardware System with High Performance, High Reliability and Massive Resource

CSD-603AWE takes the floating point high performance multi-DSP and industrial grade FPGA with large capacity, integrated transceiver and fast Ethernet technology, to provide the high speed and reliability. It has passed the highest level EMC test for 11 items in the IEC61000 standard for its overall interference immunity.


➤ Data Acquisition with High Precision

CSD-603AWE adopts the high resolution 16-bit parallel A/D converter, with dual A/D sampling for each AC channel and it samples 80 points at high speed for each cycle.

Analog channels	Up to 8CT channels (1A/5A settable, 40Ir), 3CT channels (maximum 10A), and 21VT channels (0~180V)
Binary input numbers	Up to 104, input voltage is DC power 110V/125V/220V settable
Binary output numbers	Up to 64
Temperature channels	Up to 16, input signals are 4~20mA or 0~5V
Non-electrical signals	Up to 60 signal inputs, signal input power $\geq 5W$
Tap position signals	BCD code

Functions

- Interfacing with conventional current and voltage transformers
- Circuit breaker and disconnector control
- Mechanical protection
- Build-in lockout function

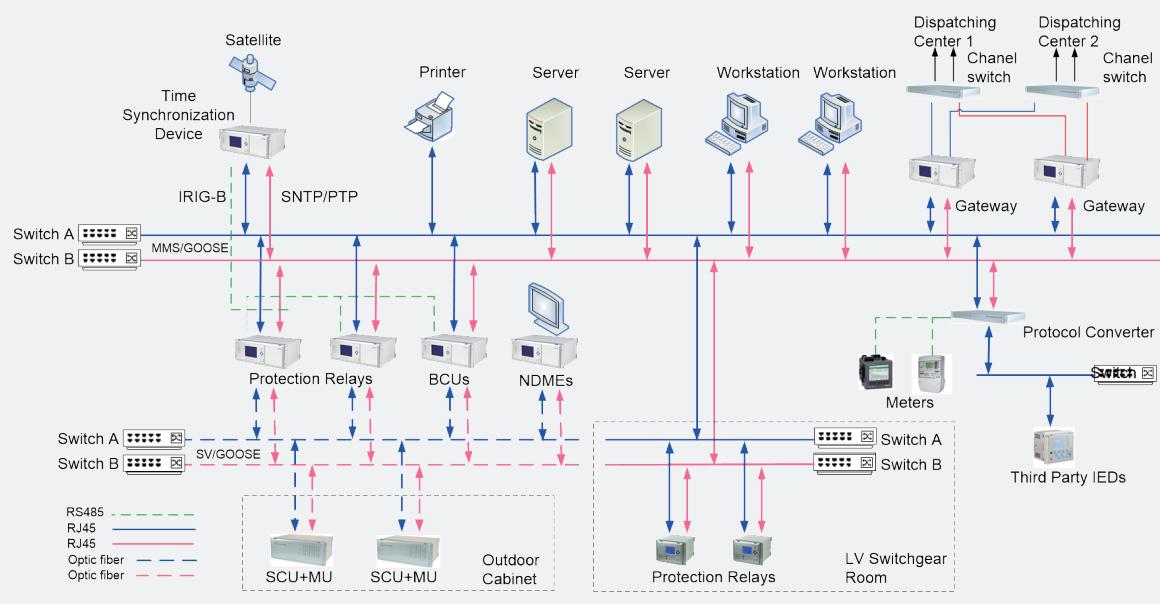
Technical Specifications

Sampling rate	Trigger Recording: 9600, 12000 /sec @ 60 Hz, selectable. 4000, 9600, 10000, 120000, 12800 /sec @ 50 Hz, selectable. Continuous Recording: 1200, 2400 /sec @ 60 Hz, selectable. 1000, 1200, 2400, 4000 /sec @ 50 Hz, selectable.
Frequency	50Hz or 60Hz
Accuracy	0.1% on voltage 0.2% on current
A/D conversion resolution	16 bits
RAM memory capacity	2GB minimum
Mass storage	320G minimum, Hard Disk
Time resolution	Records tagged to 1ns
Time synchronization	IRIG B and SNTP
Absolute time precision	<500µs with IRIG-B
Timekeeping accuracy	<500ms with 24-hour timekeeping
NDME construction	Microprocessor based/Numerical
Analogy input	64/96/128 selectable Current or Voltage selectable
Binary input	128/192/320/384 selectable
DC acquisition module	(optional) For 4 DC inputs with one module Up to 16 DC inputs with four modules
GOOSE acquisition module	(optional) For 512 GOOSE channels with 4 GOOSE modules

SCADA CSC-2000(V2)

CSC-2000 (V2) SCADA system has been operating at 6kV to 1000kV substations and plants for decades. After continuously technology evolving, the system is widely applied from the latest full digital substations to conventional substations with high scalability and flexible architecture. The system provides a powerful function library including not only basic data acquisition, monitoring and control functions, but also many advanced applications, such as interlocking, VQC, and switching sequence management. It supports rich communication protocols including the latest version of IEC61850, IEC60870-5-103, IEC60870-5-101/104, DNP3.0, etc.

System Architecture


The general SCADA system architecture comprises two primary levels:

The Station Level includes the servers or/and workstations to operate the SCADA software. Gateway and time synchronization devices are also provided. The station communication networks are also included. It inter-connects and integrates the bay level intelligent electronic devices (RTU, BCU and protection relays) using the well-proven IEC 61850 standard.

The Bay Level consists of the individual IEDs, such as protection IEDs, BCU and other integrated devices in the substations. All the devices which support IEC61850 can be connected to the station control layer network via Ethernet directly.

For digital substations, the process level and process network will also be provided.

The devices from third parties can be connected to station level network via protocol converters by IEC60870-5-103, DNP 3.0, Modbus or even private protocols via RS485 or Ethernet.

CSC-2000(V2) Typical Architecture

Features

- Complete hierarchical and distributed architecture makes the system more stable, reliable and efficient.
- System is applicable to mixing platforms with multiple operation systems (Windows/Unix) and multiple hardware systems.
- Redundancy technology is widely used for servers, networks, and gateways to improve system reliability significantly. Different network redundant methods such as PRP, HSR, RSTP, and Dual Lan can be chosen.
- Fully support IEC 61850 and other prevalent communication protocols.
- A user-friendly graphic interface allowing operators to perform their tasks easily, efficiently and directly.

- Reliable and flexible switching sequence management can satisfy the requirements for different operating conditions.
- 3 level control modes: remote control, SCADA control and local control.
- Modular and scalable architecture with off-the-shelf components.
- Web-Service interfaces and web access are available.
- Complete cyber security measures such as authentication and authorization management, malware protection, antivirus and secure remote access.

Functions

- Data Acquisitions
- Graphical monitoring
- Smart Control
- Switching Sequence Management
- Interlock logic
- Event and alarm management
- Report management

- Historian
- Protection management function
- Topology analysis and dynamic coloring function
- VQC subsystem
- Real-time and historical trending
- Authentication and authorization management
- Cyber security

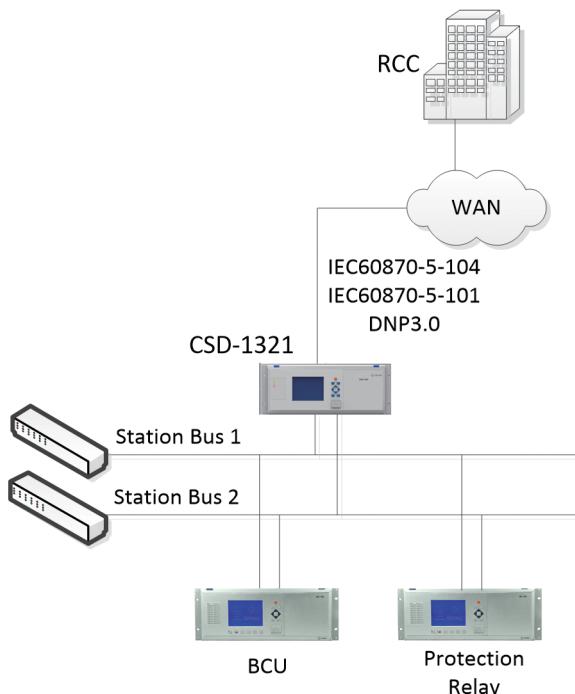
Technical Specifications

Integrated tolerance of analogue measurement	$\leq 0.5\%$
Tolerance of grid frequency measurement	$\leq 0.01 \text{ Hz}$
Maximal quantity of analogue input signal	≥ 50000 , extendable
Maximal quantity of binary input	≥ 50000 , extendable
Maximal quantity of binary output	≥ 1000 , extendable
SOE	$\leq 2\text{ms}$
Operation accuracy rate	100%
Telecommand success rate	$\geq 99.99\%$
Telemetry qualification rate	$\geq 98\%$
Telesignalization accurate rate in fault	$\geq 99\%$
System availability rate	$\geq 99.8\%$
Workstation CPU average load rate	
In normal condition (in any 30mins)	$\leq 30\%$
In power system fault (in 10s)	$\leq 50\%$
Automation system network average load rate	
In normal condition (in any 30mins)	$\leq 30\%$
In power system fault (in 10s)	$\leq 50\%$
Post disturbance review	
Before the fault	5 minutes, extendable
After the fault	10 minutes, extendable
System response time	
Telemetry information response time (from terminals to station level)	$\leq 3\text{s}$
Telemetry exceeding limit transmission time	$\leq 3\text{s}$
Tele-signalization change response time	$\leq 2\text{s}$
Control command output time (from generation to output)	$\leq 1\text{s}$

GATEWAY CSD-1321

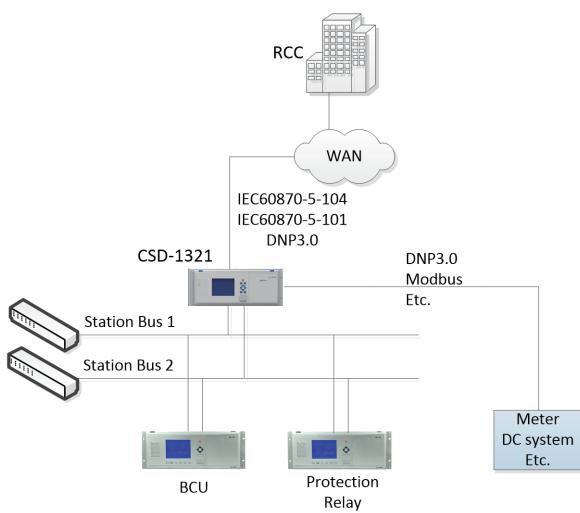
CSD-1321 is developed on the SIFANG new generation software platform and hardware platform CSD+, and is mainly used as station level communication management unit in the occasions of substation automation system (SAS), rail transit, new energy, industrial control, etc., with the following typical application scenarios:

- Communicate with dispatch center as a Gateway.
- Used as a protocol converter.
- Used as protection management system (PMS) slave unit.
- Used as distributed RTU, together with CSI-200E.
- Communicate with remote control center as data concentrator, transmit the information of the BMS (Building Management System), ESADS (Electronic Security Access Door System), CCTV, transformer online monitoring system, etc.

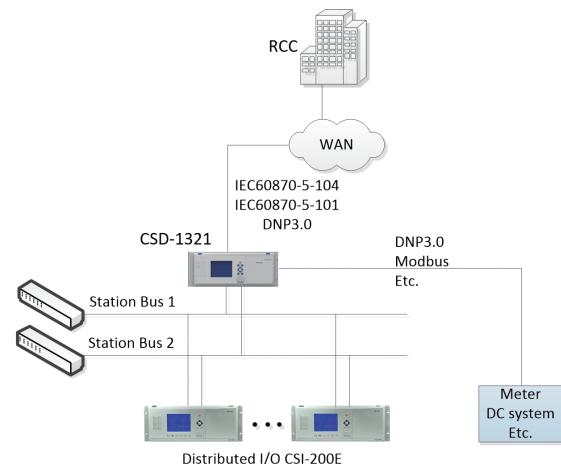

Features

- 4U height 19 inches width according to IEC 60297-3. Based on SIFANG CSD+ hardware platform with high protection grade: front panel IP54, rear panel IP30, chassis (up, down, left and right) IP30.
- The modules can be plug and pull out from the rear.
- Main module adopts embedded 32-bit dual-core 800MHz processor with 2GB DDR3 memory and 128G SSD (or 480G selectable), no cooling fan, low power consumption.
- Main module is based on embedded real time OS
- Pass EMC test with highest class of IEC 60255.
- Friendly HMI with key and LCD, tools for configuration and debug.
- Distributed architecture, modules are connected through SMBG (smart multi-mode bus group) in the back plate.
- Communication interfaces including Ethernet and serial port can be expanded with modules.
- Support IEC 61850 standard as the station level protocol, also support private protocol like CSC-2000.
- Communicate with RCC via different type of tele-communication protocols, and protocol converter function can also be integrated
- Communicate with PMS master station via protection protocol, such as TCP/IP based IEC 60870-5-103.
- Support time synchronization signal in the mode of SNTP and IRIG-B.

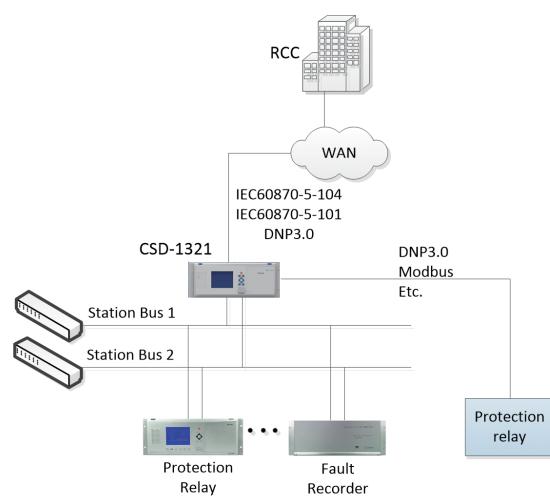
Application


➤ Typical Application 1: Gateway

CSD-1321 communicates with remote control center (RCC) via IEC 60870-5-101, IEC60870-5-104, DNP3.0 and other telecommunication protocols, and communicates with IEDs via IEC61850 and CSC-2000 protocol. The Ethernet network can be redundant.


➤ Typical Application 2: Gateway and Protocol Converter

CSD-1321 can be configured as gateway and protocol converter at the same time. The diagram below shows the application case.


➤ Typical Application 3: Distributed RTU Solution together with distributed I/O CSI-200E

CSD-1321 can provide distributed RTU solution together with SIFANG distributed I/O CSI-200E, this solution is nearly same as the gateway application case, CSD-1321 communicates with RCC via telecontrol protocols and communicate with distributed I/O CSI-200E via IEC 61850 protocol.

➤ Typical Application 4: PMS Slave Station

CSD-1321 can be used as the gateway for PMS slave station which can communicate with PMS master station via protection protocol, such as TCP/IP based IEC 60870-5-103 etc. The DFR can be integrated and the fault wave data can be transferred to PMS master station.

BAY CONTROL UNIT CSI-200E

CSI-200E Bay Control Unit (BCU) is a control and automation device in the applications of substations, power plants and other domains.

CSI-200E offers typical configurations designed for bay-oriented applications, facilitating engineering use. It also allows flexible module customization based on user requirements.

Features

➤ Flexible configuration

All the modules in CSI-200E are modular designed, connecting through internal bus, and can be plugged-out and installed simply according to the requirements.

The software function can also be configured flexibly. User can operate the configuration tools “AESP” on PC and download the PLC logic diagram to the IED. Bay interlock, synchronization function, on-load tap control and other self-defined logic function can also be achieved.

Mixable CT&VT inputs / SV (Sampling Value) input /output.

Mixable Binary inputs & output relays / GOOSE inputs / outputs.

➤ Complete event record

Large capacity Flash-ROM is equipped to record fault, alarm, operation and SOE, and data will not lose even when power off, which is convenient for fault analysis.

➤ Powerful communication function

CSI-200E can provide Ethernet interfaces in both electrical and optical, which support protocol IEC 61850.

CSI-200E also supports IEC 62439-3 for parallel redundancy protocol e.g. PRP.

➤ Local operation function

Local operation button is designed on the front panel of CSI-200E. In case of emergency, authorized user can directly operate the breakers and switches in SLD on the LCD.

Functions

➤ SLD (Single Line Diagram) display

SLD can be displayed on the LCD and with the button key the object including CB, DS, ES can be operated. SLD can be configured with the AESP tools.

➤ Telesignalization

Each BI can be configured separately as status input (double input or single input), alarm input, SOE, transformer tap input (BCD or HEX) and so on.

➤ AC measurement

Via AC measurement CSI-200E can calculate the three-phase voltage RMS, three-phase current RMS, 3U0, 3I0, active power, reactive power, power factor, frequency as well as the second to thirteen harmonic.

The functions of CT failure, VT failure, zero sequence over limit alarm, phase sequence inverse alarm are also provided.

➤ Telecontrol

Tele command from local HMI or remote control center via gateway can be accepted by CSI-200E to operate the CB, DS, ES of the bay. The telecontrol function can be interlock by the local button key or PLC interlock logic.

➤ DC measurement

CSI-200E has the function of DC measurement, which is normally used to acquire the signal such as transformer oil temperature, winding temperature, DC bus voltage, and temperature and humidity of intelligent outdoor cabinets.

➤ On-load tap control

The tap position signal (BCD code or HEX code) of primary transform can be collected and submitted. The IED can also respond the telecommand (rise, drop, or stop) from the HMI workstation or RCC to adjust the position of transformer tap.

➤ Synchronization function

Synchronization-close can be implemented in different modes including synchronization-check, energizing check or automatic quasi-synchronization.

➤ Event record and fault record function

CSI-200E can record fault, alarm, operation and SOE, no less than 2000 pcs for each type record.

CSI-200E also has the function of synchronous closing recording, and the recording data can be flexibly configured.

Technical Specifications

Workstation CPU average load rate

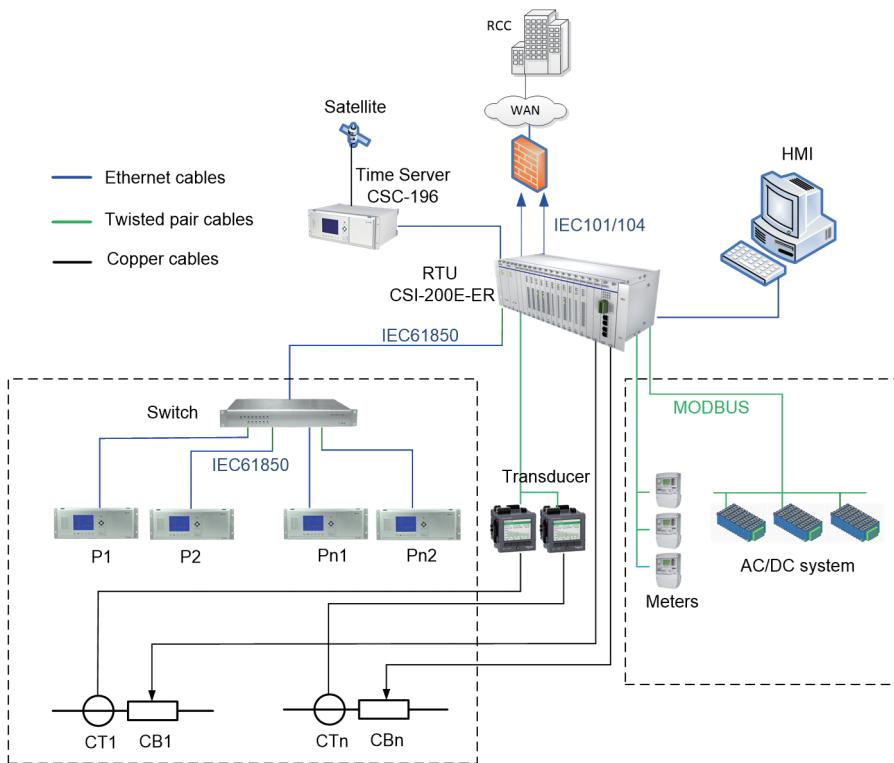
Operating temperature	-40°C - + 70°C (Except LCD)
Storage temperature	-40°C - + 70°C
Relative humidity	5% - 95%

AC current measurement

Rated current Ir	1/5 A, settable
CT Measuring range	(0.01 ~ 2) Ir
Accuracy	±0.2%

AC voltage measurement

Rated voltage V _{r.ph-ph}	1V~120 V _{ac} , settable
Measuring range of VT V _{ph-e}	0.4V ~ 180V
Accuracy	0.2 level


Other measurement	
Rated frequency	50/60 Hz, settable
Measuring range of frequency	(0.9 ~ 1.1) Fr
Frequency error	0.005Hz
DC current	4mA~20mA
DC current/voltage accuracy	0.2 level
Power measurement accuracy	0.5 level
Measurement with timestamp	≤ ±10ms
IRIG-B code/pulse synchronization error	< 0.5ms
Binary inputs	
Rated voltage V _{r.aux}	110/125/220/250 V _{dc} , settable or 24/48Vdc settable
Operating threshold	≥ 70% V _{r.aux} , guarantee operating ≤ 55% V _{r.aux} , guarantee not to operating
Maximum permissible voltage	286V, at V _{r.aux} =110/125/220/250 Vdc 62V, at V _{r.aux} =24/48 Vdc
Output relay	
Maximum contact voltage	250Vdc / 400Vac
Current carrying capacity	5A continuous 30A, 200ms on,15s off
Making capacity	1000W, at Vaux=220Vdc, L/R=40ms
Breaking capacity	30W, at Vaux=220Vdc, L/R=40ms
Auxiliary power	
Rated voltage V _{r.aux}	110V to 250V _{dc/ac} 24/48Vdc
Input voltage range	(0.8~1.2) V _{r.aux}
Burden for power supply unit	≤ 45W

RTU CSI-200E-ER

Overview

CSI-200E-ER Remote Terminal Unit (RTU) is a robust automation solution for substations, power plants, and industrial facilities. Its modular design integrates the controller, power supply, and high-density I/O modules within a single chassis, supporting up to 544 points for mid- to large-scale applications. Engineered with Level 4 EMI immunity and a flexible, scalable architecture, the CSI-200E-ER delivers reliable performance in complex industrial and harsh electromagnetic environments.

Typical RTU Application in substation

Features

High-Performance Processing

- 4-core high-performance CPU with 1 GB RAM and 8 GB storage; supports IRIG-B and PTP time synchronization
- Redundant CPU, network, and power modules; supports single-rack, dual-rack, and dual-network redundancy.
- Online configuration and logic modification during operation.
- Fast control performance with minimum 10 ms logic cycle (up to 10 I/O modules).
- Scalable architecture supporting up to 32 CPU modules, 4 local I/O stations, 32 remote I/O stations, and 512 I/O boards per system.

Advanced Cybersecurity

- Designed in accordance with IEC 62351.
- User and device authentication and access control.
- Disabling of high-risk services.
- Encrypted, authenticated, and integrity-protected communications.
- Network segmentation and continuous security monitoring and auditing.

Flexible and Reliable Communications

- Up to 5 Ethernet ports (optical and electrical) with rear redundant port support.
- Up to 4 RS485 ports and 1 CAN port.
- Supports high-speed fieldbus and Ethernet ring I/O extensions.
- Compatible with IEC 101/104/103/61850, Modbus, Profibus, HART, CAN, DNP3.0, OPC, and more.

Rich and Robust I/O Capabilities

- Intelligent I/O with built-in diagnostics and ring-redundant remote I/O.
- High analog accuracy (< 0.1%) with 2 kV I/O isolation.
- Short-circuit protection for analog inputs.
- Full SOE support for all binary inputs.
- Hot plug-and-play for all I/O modules.
- Wide operating temperature range: -40° C to +70° C.

Function

Data Acquisition

- Status Monitoring: Acquires real-time status information (Single Point & Double Point) from substation equipment, such as circuit breaker positions, isolator switch positions, and alarm signals from protection devices and power supplies.
- Analog Measurement: Measures electrical values like voltage, current, active/reactive power, frequency, and transformer tap positions.
- Energy Metering: Counts and accumulates pulses from external energy meters for calculating values like MWh and MVARh.

Remote Control & Regulation

- Device Control: Executes remote commands (Single Point & Double Point controls) from the control center to open/close circuit breakers, isolators, etc.
- Setpoint Control: Outputs analog signals (e.g., 4-20mA, 0-10V) to remotely adjust device parameters, such as a transformer's tap changer reference setting.

Data Processing & Management

- Signal Conditioning: Applies processing mechanisms like debounce filtering, uncomplimentary state filtering for double points, and oscillating input detection to ensure data quality and reliability.
- Sequential Event Recording: Time-tags and logs all status changes with high resolution (0.1 ms), storing them in a buffer for accurate post-mortem analysis of events.
- Data Logging: Records various events (status changes, measurement changes, system alarms) locally.
- Local Reporting & HMI: Allows for local retrieval of real-time database reports (signal status, measurements, system state) via a connected laptop, providing basic SCADA-like functions for testing and diagnostics.

Communication

- Clock Synchronization: Synchronizes via GPS, control center commands , or a local laptop. Supports protocols like IRIG-B, SNTP and optionally IEEE 1588 PTP.
- Multi-Protocol Communication: Communicates with the control center(s) using standard protocols (IEC 60870-5-101, IEC 60870-5-104, DNP3.0) and with Intelligent Electronic Devices (IEDs) within the substation using protocols like IEC 60870-5-103 and IEC 61850.

System Configuration & Maintenance Support

- Remote Configuration: Allows its configuration to be downloaded and modified remotely from the control center, eliminating the need for on-site visits for changes.
- System Monitoring & Diagnostics: Self-monitors its health, detecting and reporting internal faults related to hardware modules (CPU, I/O cards, power supply), software, and communication links to the control center.

Technical Specification

Module Type	Data
Case	
850-BB1901	19 slot racks
850-BB0801	8 slot racks
CPU module	
850-CM302	controller
Communication modules	
850-CA302	communication modules
Power supply modules	
850-PW4001	24V power supply modules
850-PW7502	110/220V power supply modules
850-PW7503	48V power supply modules
I/O modules	
850-DI3201	32 channels digital input modules
850-DI3202	32 channels digital input modules
850-AI0802	8 channels analogue input modules
850-AI1601	16 channels analogue input modules
850-RTD1601	16 channels RTD input module
850-TC1601	16 channels thermocouple input module
850-DO3201	32 channels digital output modules
850-AO1601	16 channels analogue output modules
850-PI0801	8 channels pulse input module
850-ACI3U3I	6 channels AC input module
850-ACI3U4I	7 channels AC input module
850-ACI4U3I	7 channels AC input module
850-ACI7U	7 channels AC input module
850-ACI7I	7 channels AC input module
Terminal board	
850-DIB1601	16 channels digital input terminal board
850-DOB1601	16 channels digital output terminal board

TIME SYNCHRONIZATION DEVICE CSC-196

Developed by SIFANG in compliance with Technical Specification for Synchronization System of Power System, the CSC-196 provides high-precision time synchronization signals for power system equipment (e.g., computers, PMUs, protection devices, fault recorders).

Features

➤ Compliance & Flexibility

Meets Technical Specification for Time Synchronization of Power System.

Supports multiple synchronization modes (basic, master-slave, hot-standby) with expandable output channels.

➤ Multi-Signal Redundancy

Accepts GPS, Beidou-2, IRIG-B (DC), and IEEE-1588 (PTP) signals.

Up to 4 redundant inputs for high reliability.

➤ High Precision

Combines Beidou/GPS timing with advanced algorithms for accuracy $<1\mu\text{s}$, meeting PMU requirements.

➤ Diverse Outputs

Pulses, IRIG-B, serial interface time message, network messages (SNTP), and IEEE-1588 (PTP).

Support optical fiber, dry contact, RS-422/485, RS-232, Ethernet and other time synchronization signal interface.

➤ Modular & Robust Design

19-inch 4U chassis with configurable modules.

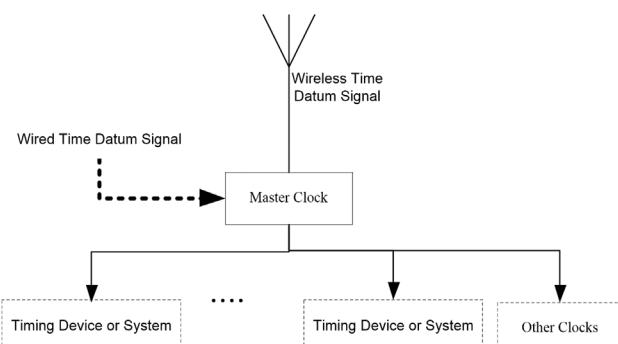
Embedded crystal oscillator maintains $<1\mu\text{s}$ accuracy for 12 hours if external signals fail.

Dual hot-swappable power supplies.

➤ Smart Compensation & Isolation

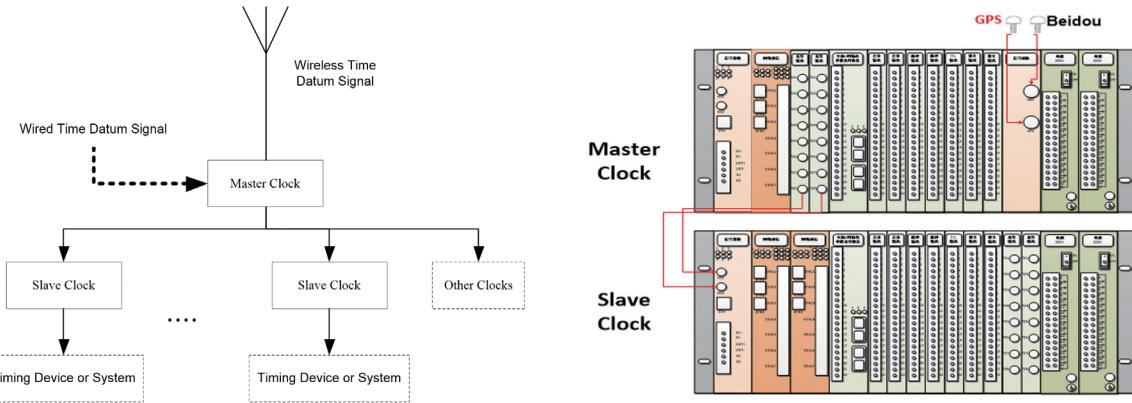
Adjustable compensation for signal transmission delays (ensures $\pm 1\mu\text{s}$ output accuracy).

➤ Monitoring & Maintenance

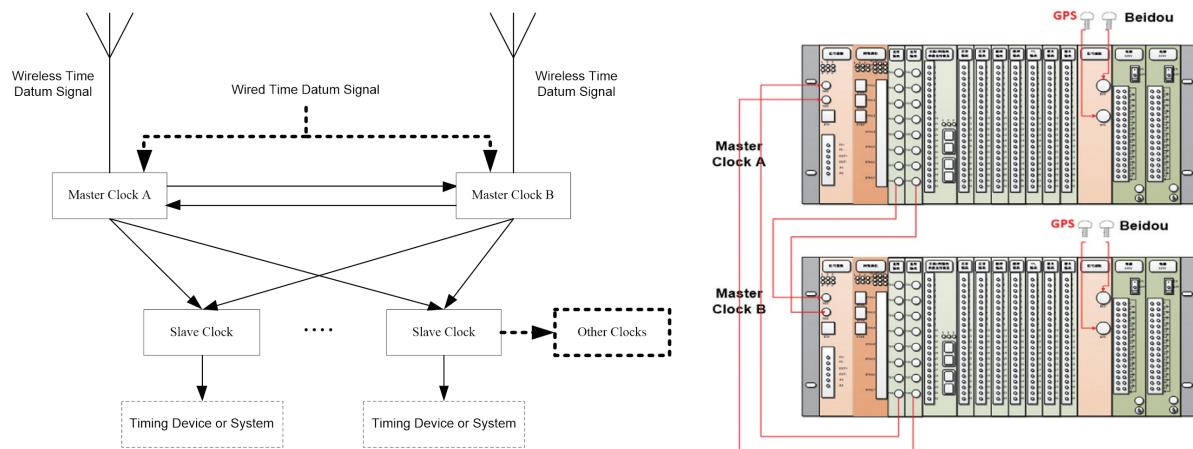

Front-panel status display and Ethernet debug interface for quick fault diagnosis.

Complies with DL/T 860 (MMS reporting) and leap second handling per IEEE C37.118-2005.

Functions


➤ Basic time synchronization system

The basic time synchronization system consists of a master clock and a signal transmission medium, serving as a timing device or system (see diagram below).


► Master-slave time synchronization system

The master-slave time synchronization system consists of: a master clock, multiple slave clocks, and a signal transmission medium.

► Hot-standby time synchronization system

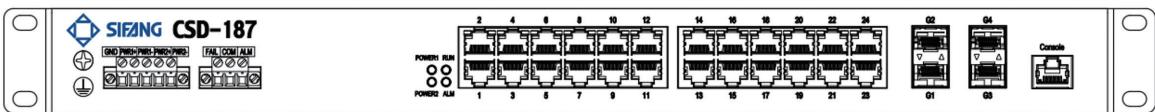
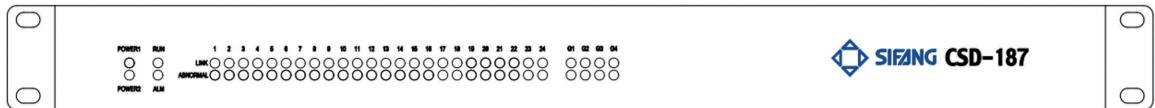
The hot-standby time synchronization system comprises: two master clocks (operating in main/backup redundancy), multiple slave clocks, signal transmission infrastructure.

ETHERNET SWITCH CSD-187-GE

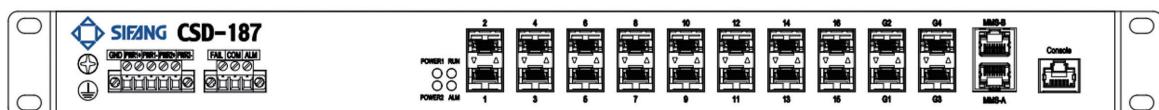
CSD-187-GE Series is a high-performance, autonomous, and controllable network switch designed by SIFANG for substation applications. It complies with IEC61850 standards and supports advanced features for power industry scenarios, including automatic configuration, unified management, traffic monitoring, and intelligent alarming.

CSD-187-GE series of substation network switches provide Gigabit Ethernet interfaces, delivering higher data transmission rates to meet the growing demands of equipment communication. The electrical ports default to 100M auto-negotiation but support 1000M operation mode. To enable 1000M, users must configure the port to auto-negotiate at 1000M. The optical ports feature hot-swappable SFP modules, allowing flexible selection of quantity and type based on actual requirements.

CSD-187-GE series includes the following models



Product Model	Maintenance Port	Service Port			Commissioning Port
	RJ45	Electrical Port	100M Optical Port	1000M Optical Port	RJ45
CSD-187-EG_E24G4	/	1-24[1]	/	G1~G4[2]	1
CSD-187-EG_F16G4E2	/	21~22[1]	1-16[3]	17~20 [2]	1
CSD-187-EG_F16G4	/	/	1-16[3]	17~20[2]	1
CSD-187-EG_G16	/	/	/	1~16 [2]	1

Note:


[1] Ports 1 to 24 are 100M/1000M configurable.

[2] The ports are 1000M optical interfaces by default. When equipped with the corresponding 100M/1000M SFP optical module, they can operate in either 100M or 1000M mode, provided the port speed is configured to match the module.

[3] The ports are 1000M optical interfaces by default. When equipped with the corresponding 100M/1000M SFP optical module, they can operate in either 100M or 1000M mode, provided the port speed is configured to match the module.

CSD-187-EG_E24G4 front view and rear view

CSD-187-EG_F16G4

CSD-187-EG_F16G4E2

CSD-187-EG_G16

Front view and rear view

Features

► Industrial-Grade Design

Operating temperature: -40 ° C to +70 ° C; humidity: 5%–95% (non-condensing).

Redundant dual power supply (AC 220V or DC 110V/220V).

IP40 protection, anti-electromagnetic interference (EMC Level 4 per GB/T 17626).

MTBF ≥ 200,000 hours.

► Network Ports

Electrical Ports: 10/100/1000Mbps auto-negotiation (RJ45).

Optical Ports: SFP slots (100M/1000M, hot-swappable).

Management Ports: MMS-A/MMS-B (RJ45, default IP: 192.168.3.254/192.168.4.254).

Console Port: RJ45 (115200 baud).

➤ Advanced Functions

Auto-Negotiation: Supports speed/duplex auto-negotiation for electrical ports (default: 100M).

VLAN: IEEE 802.1Q (up to 4094 VLANs), port-based VLAN, and PVID configuration.

QoS: IEEE 802.1p priority (8 queues), strict/weighted fair scheduling.

Multicast: Static multicast MAC binding, GMRP dynamic multicast, and storm suppression.

Security: MAC/IP whitelisting, port isolation, SNMPv3 encryption, and user role-based access control.

Reliability: RSTP ring network protocol (<50ms failover), LLDP for topology discovery.

➤ Traffic Control

Flow Control: IEEE 802.3x for full-duplex; broadcast/multicast/unknown unicast storm suppression.

Rate Limiting: Per-port ingress/egress bandwidth control (kbps granularity).

➤ Management

Web GUI: HTTPS-based configuration (default IP: 100.100.100.100).

CLI: Console/SSH access for advanced settings.

SNMP: v1/v2c/v3 support for remote monitoring.

MMS/CMS: IEC 61850-compliant data services (GOOSE/SV support).

➤ Substation-Specific Enhancements

GOOSE/SV Optimization: Hardware-based filtering and rate limiting (2Mbps for GOOSE, 15Mbps for SV).

CSD Offline Configuration: Preload VLANs/multicast via CID/CSD files (IEC 61850 SCL format).

Time Synchronization: SNTP/NTP support ($\pm 10\text{ms}$ accuracy).

➤ Robust Security

Role-Based Access: Admin/operator/auditor roles with granular permissions.

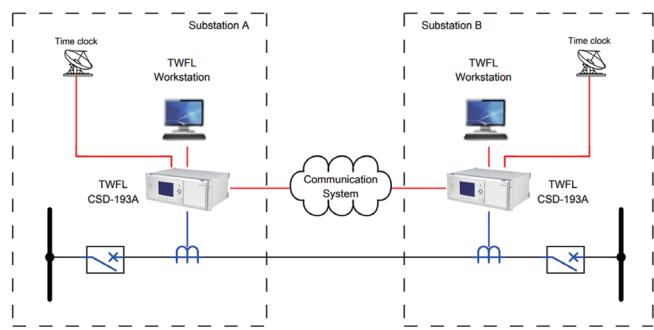
Attack Mitigation: Anti-DoS, MAC/IP spoofing prevention, and secure firmware updates.

➤ Monitoring & Diagnostics

Real-time port statistics (errors/drops/throughput).

SFP health monitoring (temperature, Tx/Rx power).

Syslog/SNMP traps for alarms (power/temperature/voltage).



FAULT LOCATOR CSD-193A

CSD-193A Transmission Line Fault Locator integrates two fault location principles, travelling wave and impedance-based methods, combining the reliability of impedance measurement with the high precision of travelling wave detection. This dual-method approach ensures highly accurate and dependable fault location.

Architecture

Features

➤ Comprehensive Fault Location Methods

Supports both single-ended and double-ended fault location.

Impedance principle (for reliable distance estimation).

Traveling wave principle (for high-precision detection).

➤ Multi-Line Monitoring

Capable of fault location for 1–4 transmission lines.

➤ High-speed AD sampling with

3.46 MHz (traveling wave signal).

4.8 kHz (power frequency signal).

➤ Large-Capacity Storage & Data Retention

Built-in eMMC storage ($\geq 5,000$ fault records).

Non-volatile memory ensures data retention even during power outages.

➤ Enhanced Reliability & Synchronization

Dual-ended sync startup technology: Ensures fault detection even under weak fault conditions.

Self-diagnostic module check for system health monitoring.

➤ Comprehensive Reporting & Logging

Generates operation logs, alarm reports, and fault location records.

Stores up to 2,000 reports with power-loss protection.

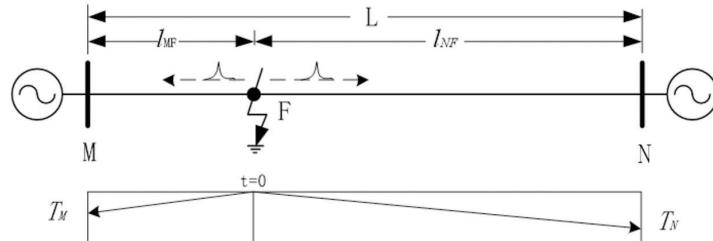
➤ Flexible Communication Options

4× electrical Ethernet ports (IEC 61850 / TCP103 for substation automation).

3× configurable optical/electrical Ethernet ports (inter-station communication, and fault locator management station communication).

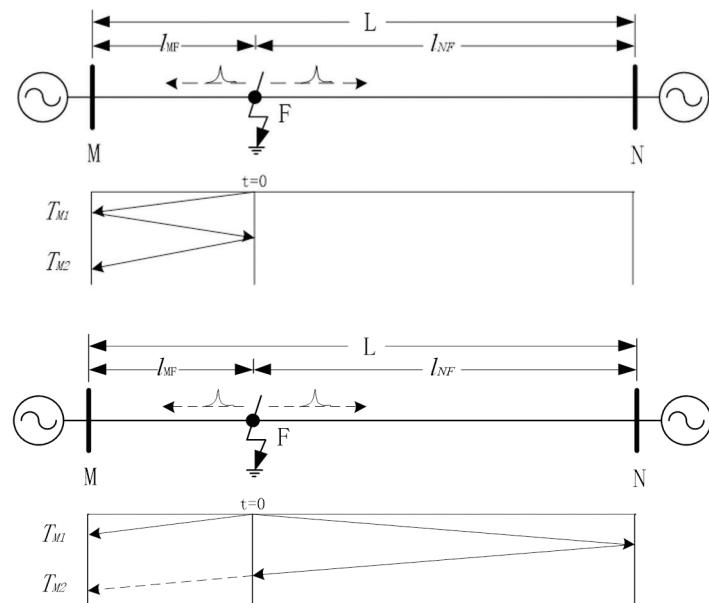
➤ Precision Time Synchronization

Supports optical & electrical IRIG-B sync (time error $<1\ \mu\text{s}$).


➤ The average error of double terminal fault location is less than 500m

Functions

Description	ANSI code
Double terminal traveling wave principle fault location	FL2TW
Single terminal traveling wave principle fault location	FL1TW
Double terminal impedance principle fault location	FL2Z
Single terminal impedance principle fault location	FL1Z

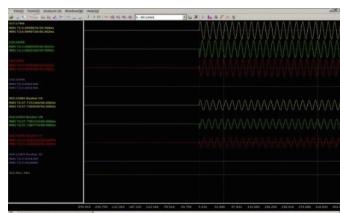

Double-Ended Traveling Wave Fault Location Principle

The double-ended traveling wave method calculates the fault location by measuring the time difference between the arrival of the initial fault-induced traveling wave at both ends of the transmission line. This method determines the distance from the fault point to each terminal using the absolute time stamps of the detected wavefronts.

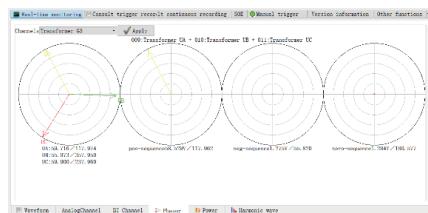
Single-Ended Traveling Wave Fault Location Principle

The single-ended method computes the fault distance based on the time difference between the initial fault traveling wave and its reflected wave detected at the same terminal.

NDME CSGC-SMDS-DG

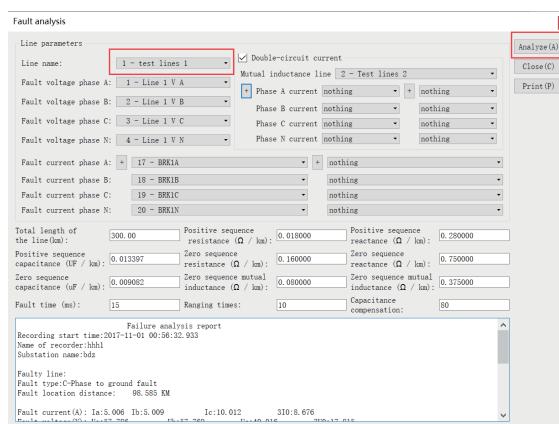

CSGC-SMDS-DG is a kind of Network Disturbance Monitoring (NDME) and fault-location equipment for 6kV-1000kV power grid. It plays an important role to monitor the operation of protection IEDs, and is able to record the whole process of the fault in detail.

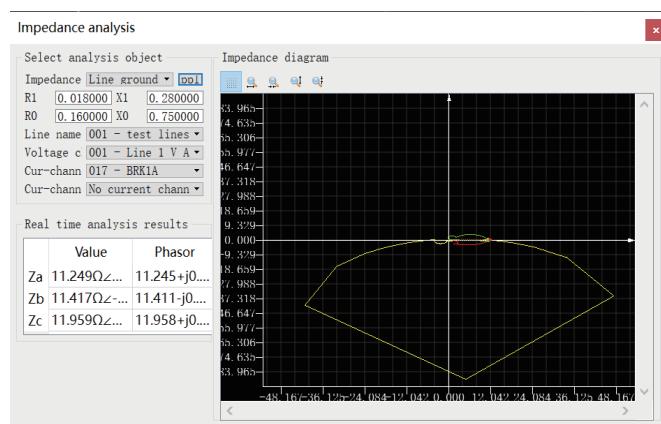
CSGC-SMDS-DG can provide mixable CT&VT inputs / SV (Sampling Value) input, and mixable binary inputs / GOOSE inputs.


When the fault occurs, NDME can record not only the waveform and RMS value of the three-phase current, voltage and zero sequence current, but also the operating action of protection IEDs, and can provide the detailed report of the fault or disturbance, including but not limited:

- Fault time.
- Fault type.
- Amplitude and phase of the current and voltage.
- Record the time of the fault or disturbance and the action of the relevant protection IEDs and automation IEDs.

- The whole operating process of tele-protection function, including transmitting time, stopping time.
- The whole operating process of auto reclosing function


Waveform Analysis

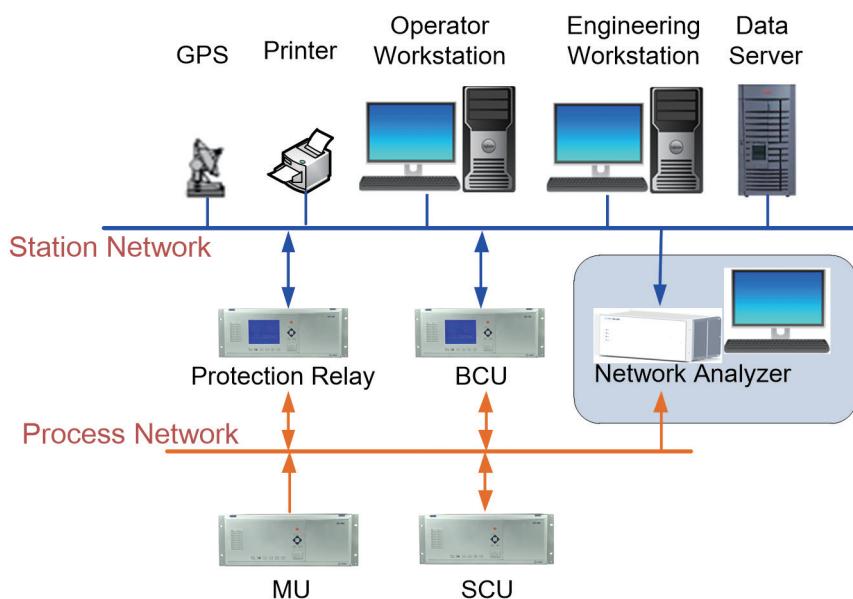

Phasor Analysis

Harmonics Wave

Fault Analysis

Impedance Analysis

Technical Specifications


	Trigger Recording: 9600, 12000 /sec @ 60 Hz, selectable. 4000, 9600, 10000, 120000, 12800 /sec @ 50 Hz, selectable. Continuous Recording: 1200, 2400 /sec @ 60 Hz, selectable. 1000, 1200, 2400, 4000 /sec @ 50 Hz, selectable.
Sampling rate	
Frequency	50Hz or 60Hz
Accuracy	0.1% on voltage 0.2% on current
A/D conversion resolution	16 bits
RAM memory capacity	2GB minimum
Mass storage	320G minimum, Hard Disk
Time resolution	Records tagged to 1ns
Time synchronization	IRIG B and SNTP
Absolute time precision	<500µs with IRIG-B
Timekeeping accuracy	<500ms with 24-hour timekeeping
NDME construction	Microprocessor based/Numerical
Analogy input	64/96/128 selectable Current or voltage selectable
Binary input	128/192/320/384 selectable
DC acquisition module	(optional) For 4 DC inputs with one module Up to 16 DC inputs with four modules
GOOSE acquisition module	(optional) For 512 GOOSE channels with 4 GOOSE modules

NETWORK ANALYZER CSRA-2000

Network Analyzer CSRA-2000 is used to online monitor and record the communication messages of all kinds of protocols in substation communication network, including SV, GOOSE, MMS, IEC104.

Architecture

Management Unit (CSRA-2000-NMU) Functions

➤ Data Aggregation and Analysis

Collects analysis results from all collection units, performs station-wide communication data statistics and analysis, and uploads results.

Supports retrieval and storage management of recorded files

➤ Real-Time Monitoring and Alarms

Displays the communication link status (normal/abnormal/static configuration) of all station devices, supporting real-time monitoring of MMS, GOOSE, and SV protocols.

Provides alarm functions for anomalies such as device failures, communication interruptions, and model inconsistencies.

➤ Query and Statistics

Supports querying events, statuses, point information, and statistical values by time, device and protocol type, etc.

Statistical dimensions include packet count, byte count, communication interruption frequency, protocol errors, etc.

➤ Packet Analysis Tools

Parses MMS, GOOSE, SV, and other protocol packets, supporting traffic analysis, session statistics, IP-MAC mapping table queries, etc.

➤ Configuration Management

Imports SCD files and configures parameters such as the number of collection units, IP addresses, and storage paths.

Manages user permissions and audits operation logs.

Collection Unit (CSRA-2000-NCU) Functions

➤ Packet Capture and Recording

Uses FPGA hardware for real-time packet capture with timestamping (resolution $\leq 1\mu\text{s}$).

Supports long-term continuous recording: SV/GOOSE/MMS packets ≥ 7 days (average traffic $\leq 200\text{Mbps}$). Storage medium: 4TB hard drive, supports categorized storage.

➤ Online Protocol Parsing

Parses packets at each layer (network layer, protocol layer, application data layer) during communication.

Identifies network anomalies (e.g., traffic spikes, frame loss), protocol errors (e.g., GOOSE StNum inconsistency), and data anomalies.

➤ Performance Specifications

Single-interface capacity: $\geq 100\text{Mbps}$ (electrical/optical ports).

Long-term stable operation capability: $\geq 200\text{Mbps}$ (non-SV packets $\leq 10\%$).

Supports IRIG-B time synchronization with accuracy $<1\mu\text{s}$.

➤ Self-Test and Alarms

Features self-reset functionality and monitors hardware status (e.g., CPU, memory, temperature).

Indicates faults/alarms via LEDs and relay outputs (e.g., power loss, storage medium failure).

Technical Specifications

➤ Monitoring interface and access capability

1) Management Unit :

6 10/100/1000M adaptive Ethernet port.

Report access capability of a single interface: $\leq 100\text{Mbps}$.

2) Collection unit:

8 LC module collection ports, can be configured as optical or electrical ports, and the last 2 support gigabit optical ports.

The maximum reported access capacity of the device during long-term stable operation is $\leq 250\text{Mbps}$ (25 MUs).

➤ Data record capability

Capture time resolution $<1\mu\text{s}$.

Continuous recording and storage of SV reports for ≥ 7 days.

Continuous recording and storage of GOOSE reports for ≥ 7 days.

Continuous recording and storage of MMS reports for ≥ 7 days.

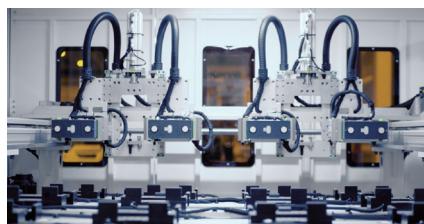
Storage of "status" and "event" categories for ≥ 7 days; "Statistics" storage for ≥ 3 days.

Reports file recording method: classified storage.

Storage hard disk capacity: 4TB.

➤ Timing synchronization accuracy

Collection unit: Electric IRIG-B, with a timing accuracy of less than 1us and a 1-hour timing accuracy of less than 1ms;


Management unit: SNTP or electrical IRIG-B, with timing accuracy less than $\pm 1\text{s}$.

MANUFACTURING SYSTEM

SIFANG vigorously promotes the construction of green and intelligent factories, and has obtained national level green factory certification.

Building digital factories based on smart IoT architecture in Baoding, Huzhou, and Nanjing, integrating core systems such as MES/SCADA/WMS/PLM, continuously introducing upgraded fully automated SMT production lines and other equipment, achieving full process automation and intelligence in production, operation, assembly, testing, warehousing, and delivery, and creating smart and transparent factories.

SERVICE SYSTEM

SIFANG's service system has successfully obtained BSI certification from British Standards Association. And we always pay attention to and strive to meet the service needs of users, respond quickly, and make every effort to serve.

	Service Network	<p>Relying on China headquarter and overseas subsidiaries such as the Philippines subsidiary, Indian subsidiary and Kenya subsidiary, SIFANG's international services cover more than 90 countries around the world.</p>
	Service Content	<p>Commissioning Operation and Maintenance Service Technical Training Technical Support</p>
	Contact Us	<p>Beijing: support@sf-auto.com, sf_sales@sf-auto.com Indian: sf_sales_in@sf-auto.com</p>
		<p>The Philippines: sf_sales_ph@sf-auto.com Kenya: sf_sales_ke@sf-auto.com</p>

COOPERATION AND PARTNERS

国家电网
STATE GRID

中国南方电网
CHINA SOUTHERN POWER GRID

国家能源集团
CHN ENERGY

中国华能
CHINA HUANENG

国家电投
SPIC

中国华电
CHD

唐 DTP
大唐国际

华润电力
CR POWER

中广核 CGN

中核集团
CNNC

中国三峡
China Three Gorges Corporation

中国电建
POWERCHINA

中国电力工程有限公司
CHINA NATIONAL ELECTRIC ENGINEERING CO., LTD.

中国能建
ENERGY CHINA

中国中铁

中国石油

中国石化
SINOPEC

中化
sinochem
科学至上

中国化学工程集团有限公司
China National Chemical Engineering Group Corporation Ltd

国投

NGCP

PEA
Provincial Electricity Authority

Kenya Power

adani

LARSEN & TOUBRO

ScottishPower

Electricité du Laos

CI-ENERGIES
CÔTE D'IVOIRE ÉNERGIES

Sonatrach

Société
Nationale
d'Electricité

Egypt
Electricity
& Gas
Corporation

TCDD

GPL
GUYANA POWER & LIGHT

Stock Code
601126

BEIJING SIFANG AUTOMATION CO., LTD.

Add: No.9, Shangdi 4th Street, Haidian District, Beijing, P.R.China 100085
Tel: +86 10 62961515 | Fax: +86 10 62981004
Email: sf_sales@sf-auto.com

www.sifang-electric.com